
CS352 Lecture - Relational Calculus; QBE

Last revised January 24, 2017
Objectives:

1. To briefly introduce the tuple and domain relational calculi
2. To briefly introduce QBE.

Materials

1. QBE Demo (qbe.jar from updated version of Jason Rozen's senior project from 2006)
2. Projectable form of QBE Examples in lecture

I. The Relational Calculus

A. The relational calculus is a non-procedural formal query language. It is
derived from predicate calculus.

1. A predicate is an assertion that we require to be true. When we formulate
a query in the relational calculus, we specify a predicate that the object(s)
we are looking for must satisfy.

2. Unlike relational algebra - which is procedural - relational calculus is
non-procedural - i.e. we specify what requirements the result must
satisfy, not how to compute it.

B. Just as the relational algebra serves as the mathematical foundation for the
commercial query language SQL, the relational calculus serves as the
mathematical foundation for various commercial visual query languages.

C. There are two variants of the relational calculus: the tuple relational calculus
and the domain relational calculus. Both use variables in formulating
predicates, but they use them in different ways.

1. In the tuple relational calculus, variables represent tuples, and predicates
are formulated in terms of attributes of a tuple variable.

Ex: Find book tuples for which author = dog:

{ t | t e book ^ t[author] = dog }

1

2. In the domain relational calculus, variables represent individual
attributes, and complete tuples are represented as lists of attributes.

Ex: The above query:

{ <call_number, title, author> |
	 <call_number, title, author> e book ^ author = dog }

3. In either case, we represent a query by a predicate which we want the
result to satisfy.

D. It is important to see that there are definite analogues between operations in
relational algebra and predicates in relational calculus.

1. In fact, it can be shown that the systems are of equivalent power, in the
sense that any query that can be formulated in the relational algebra
(without the extensions we have discussed) can be formulated in either of
the relational calculi, and any safe formula (we define this later) in either
of the relational calculi is equivalent to some query in the relational
algebra.

2. Thus, it is possible for one system to support query languages of both
types by internally translating from a query of one type into the language
used internally (most often a variant of relational algebra, since this is
procedural in nature.)

E. We will now consider examples of relational calculus equivalents to each
basic relational algebra operation.

1. Relational algebra SELECTION:

σ	 book
 author = dog

See the two examples above

2

2. Relational algebra PROJECTION:

π borrower
 last_name
 first_name

a) tuple r.c.:

{ t | ∃ s (s ∊ borrower ^ t[last_name]=s[last_name] ^
	 	 t[first_name]=s[first_name]) }

where t is on the new scheme (last_name, first_name)

b) domain r.c.:

{ <last_name, first_name> | ∃ borrower_id
	 	 (< borrower_id, last_name, first_name> ∊ borrower) }

3. Relational algebra NATURAL JOIN: checked_out |X| borrower

a) i. tuple r.c.:

{ t | ∃ u, v (u ∊ checked_out ^ v ∊ borrower ^
	 u[borrower_id] = v[borrower_id] ^
	 t[borrower_id] = u[borrower_id] ^
	 t[call_number] = u[call_number] ^
	 t[date_due] = u[date_due] ^
	 t[last_name] = v[last_name] ^
	 t[first_name] = v[first_name]) }

where t is on the new scheme

	 (borrower_id, call_number, date_due, last_name, first_name)

b) domain r.c.:

{ <borrower_id, call_number, date_due, last_name, first_name> |
	 <borrower_id, call_number, date_due> ∊ checked_out ^
	 <borrower_id, last_name, first_name> ∊ borrower }

3

4. Relational algebra UNION: Suppose we have two tables that have the
same scheme - say student_borrower and fac_staff_borrower - and want
a table including all persons in either group:

a) tuple r.c.:

{ t | (t ∊ student_borrower) v (t ∊ fac_staff_borrower) }

b) domain r.c.:

{ <borrower_id, last_name, first_name> |
	 (<borrower_id, last_name, first_name> ∊ student_borrower) v
	 (<borrower_id, last_name, first_name> ∊ fac_staff_borrower)}

5. Relational algebra DIFFERENCE: Suppose, instead, we have a general
borrower table - which contains information on all borrowers - plus a
student_borrower table, which contains only student borrowers, and we
want to list borrowers who are not students. In relational algebra, this
would be borrower - student_borrower

a) tuple r.c.:

{ t | (t ∊ borrower) ^ ¬ (t ∊ student_borrower) }

b) domain r.c.:

{ <borrower_id, last_name, first_name> |
	 (<borrower_id, last_name, first_name> ∊ borrower) ^
	 ¬ (<borrower_id, last_name, first_name> ∊ student_borrower)}

6. A more complete example:

Find the last name of all borrowers who have an overdue book

π 	σ	 	 	 checked_out |X| borrower
last_name date_due < -- whatever today is --

Ask class to do in each relational calculus:

4

a) tuple:

{ t | ∃ u,v
	 (u ∊ checked_out ^ v ∊ borrower ^
 	 t[last_name] = v[last_name] ^
	 u[borrower_id] = v[borrower_id] ^
	 u[date_due] < "February 13, 2017") }

b) domain:

{ <last_name> | ∃ borrower_id, call_number, date_due, first_name
	 (<borrower_id, call_number, date_due> e checked_out ^
	 <borrower_id, last_name, first_name> e borrower ^
	 date_due < "February 13, 2017") }

F. One important property of relational calculus formulas is SAFETY. A
relational calculus formula is said to be safe iff it does not require us to
inspect infinitely many objects.

1. Example: the query { t | ¬ (t ∊ R) } is not safe. For any relation R, there
are infinitely many tuples that are not members of that relation!

2. Unsafe formulas are most often the result of improper use of not. In
general, the set of all values NOT satisfying some predicate is infinite;
so when not is used it must be coupled with an additional condition that
narrows the scope of consideration - e.g. if P(x) and Q(x) are safe
formulas then

	 ¬ Q(x)

is unsafe, but

	 P(x) ^ ¬ Q(x)

is safe.

5

3. The most common way to ensure that a formula is safe is to include a
formula that restricts consideration to tuples from a particular relation -
i.e. a formula of the form t ∊ R or <a,b,c> ∊ R.

4. Notice that the issue of safety is unique to the relational calculus. One
cannot formulate an unsafe query in the relational algebra - hence only
safe relational calculus formulas have relational algebra equivalents.

II. Another Commercial Query Language: QBE

A. As we noted earlier, there have been many different commercial relational
query languages. Though SQL (based on the relational algebra)dominates
the world of procedural languages, there are also commercial non-procedural
query languages that are based on the relational calculus. One other we will
look at briefly is QBE - Query by Example.

1. Like SQL, QBE was developed by IBM. Today, it is supported for
accessing databases from personal desktop assistants (for which SQL is a
poor tool because of the lack of a standard keyboard).

2. Microsoft Access includes a visual query facility called QBE which is
very similar to the original IBM model, though not identical.

3. The original QBE was designed for use with text-based terminals.
Micro-computer QBE implementations make use of graphics and direct
manipulation.

B. The basic idea in QBE is this: one formulates a query by selecting one or
more tables.

1. In the original QBE, one then specified for each of the columns of a
selected table whether it is to be:

a) Constrained to have a specific value, or a value lying within a specific
range.

6

b) Constrained to match the value in some column of some other table
involved in the query.

c) Printed regardless of what value it contains

d) Ignored

Example: Suppose one used a QBE-like facility with our sample library
database, and wanted to see the first names of borrowers whose last
name is "Aardvark". Using the format of the original QBE display, one
would need to use just the borrowers table, and would setup the grid as
follows:

PROJECT

When the query was run, the desired names would appear in the
first_name column.

Example: Suppose one wanted to see the names of borrowers together
with the titles of books they have checked out.

- One needs to use information from three tables: the borrower table
(for borrower names), the book table (for book titles) and the checkout
table.

- Using the format of the original QBE display, one would select these
tables and set up something like this:

7

borrower	 borrower_id	 last_name		 first_name

	 	 	 	 	 Aardvark	 	 P.

PROJECT

2. In a graphical version of QBE, one would only choose the columns one
was interested in (thus borrower_id would not be selected for the first
query, and author and date_due would not be selected for the second.)
Moreover, the “join-condition” would be specified by drawing a line
between columns, rather than by using variables.

3. Note that the sample queries are equivalent to the following domain
relational calculus queries:

{ < f > | < i, "Aardvark", f > € borrower }

{ < l, f, t > | < i, l, f > € borrower ^ < c, t, a > € book ^
	 	 	 < i, c, d > € checked_out }

4. Of course, there is also a relational algebra or SQL equivalent - e.g. for
SQL:

select first_name from borrower where last_name = "Aardvark";

select last_name, first_name, title
	 from borrower natural join book natural join checked_out

(In fact, a QBE implementation might actually translate the query into
SQL if that is the "native" query language of the DBMS)

8

borrower	 	 borrower_id	 last_name		 first_name

	 	 	 _x	 	 	 P.	 	 	 P.

book		 	 call_number	 title	 	 	 author

checked_out	 borrower_id	 call_number	 date_due

	 	 	 _y	 	 	 P.

	 	 	 _x	 	 	 _y

C. Demonstration: Jason Rozen Senior Project

1. Launch qbe.jar (double click jar - but leave on intro screen). Connect to
database.

2. Connect directly to the same database:
mysql -u cps221 -p
use library;
show tables;
- select * from each

Note the same list of tables in the dropdown; put up all three and note
how column names match results on direct connect

3. Now formulate the following query in QBE: list the titles of all overdue
books (assume today is February 1, 2001 in light of data in database!)
(Enter < ’2010-11-15’ for dateDue, _c for callNo in CheckedOut and
Book; check print Title)

4. Now formulate the following query in QBE: list the titles of all books
that Donna Dog has out.

a) From manual inspection of tables, who should this be?

b) Do in QBE. (Enter Dog as lastName for borrower; _i as borrowerID
in both borrower and checkedOut; _c as callNo in both checkedOut
and Book; check Print for title in Book; copy generated SQL to
clipboard then Submit Query,

c) Look at generated SQL by paste to a text editor, then run on dbms.

9

